Ультрасферические многочлены - Definition. Was ist Ультрасферические многочлены
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Ультрасферические многочлены - definition

Полиномы Гегенбауэра; Ультрасферические многочлены; Ультрасферические полиномы; Гегенбауэра многочлены

Ультрасферические многочлены      

многочлены Гегенбауэра, специальная система многочленов последовательно возрастающих степеней. Для n = 0, 1, 2,... У. м. Pnλ (х) степени n являются коэффициентами при αn в разложении в степенной ряд функции

У. м. ортогональны (см. Ортогональные многочлены) на отрезке [-1; + 1] относительно веса . У. м. - частный случай Якоби многочленов (См. Якоби многочлены).

Чебышева многочлены         
  • Многочлены Чебышёва первого рода
ДВЕ ПОСЛЕДОВАТЕЛЬНОСТИ ОРТОГОНАЛЬНЫХ МНОГОЧЛЕНОВ
Многочлен Чебышева; Многочлен Чебышёва; Полином Чебышева; Полином Чебышёва; Полиномы Чебышева; Полиномы Чебышёва; Чебышева многочлены; Многочлены Чебышева

1) Ч. м. 1-го рода - специальная система многочленов последовательно возрастающих степеней. Для n = 0, 1, 2,... определяются формулой:

В частности, Т0 = 1; T1 = х; T2 = 2x2 ―1; T3 = 4x3 ― 3x; T4 = 8x4 8x2 + 1. Ч. м. Tn (x) ортогональны (см. Ортогональные многочлены) на отрезке [-1; + 1] относительно веса (1 - x2)―1/2. Дифференциальное уравнение:

(1 - x2) у" - ху + n2у = 0.

Рекуррентная формула: Tn+1(x) = 2xTn (х) - Tn―1(x).

Ч. м. 1-го рода являются частным случаем Якоби многочленов (См. Якоби многочлены) Pn (αβ)(x):

.

2) Ч. м. 2-го рода Un (x) - ортогональная на отрезке [-1; + 1] относительно веса (1 -x2)1/2 система многочленов, связанная с Ч. м. 1-го рода, например рекуррентным соотношением:

(1 - x2) Un―1(х) = xTn (х) Tn+1(х).

Лит.: Чебышев П. Л., Полн. собр. соч., т. 2-3, М.-Л., 1947-48; Сеге Г., Ортогональные многочлены, пер. с англ., М., 1962.

ЧЕБЫШЕВА МНОГОЧЛЕНЫ         
  • Многочлены Чебышёва первого рода
ДВЕ ПОСЛЕДОВАТЕЛЬНОСТИ ОРТОГОНАЛЬНЫХ МНОГОЧЛЕНОВ
Многочлен Чебышева; Многочлен Чебышёва; Полином Чебышева; Полином Чебышёва; Полиномы Чебышева; Полиномы Чебышёва; Чебышева многочлены; Многочлены Чебышева
специальная система многочленов, ортогональных с весом (Чебышева многочлен 1-го рода) или с весом (Чебышева многочлен 2-го рода) на отрезке [-1; 1] (см. Ортогональная система функций). Введены в 1854 П. Л. Чебышевым.

Wikipedia

Многочлены Гегенбауэра

Многочле́ны Гегенба́уэра или ультрасфери́ческие многочле́ны в математике — многочлены, ортогональные на отрезке [−1,1] с весовой функцией ( 1 z 2 ) α 1 / 2 {\displaystyle (1-z^{2})^{\alpha -1/2}} . Они могут быть явным образом представлены как

C n ( α ) ( z ) = k = 0 n / 2 ( 1 ) k Γ ( n k + α ) Γ ( α ) k ! ( n 2 k ) ! ( 2 z ) n 2 k , {\displaystyle C_{n}^{(\alpha )}(z)=\sum _{k=0}^{\lfloor n/2\rfloor }(-1)^{k}{\frac {\Gamma (n-k+\alpha )}{\Gamma (\alpha )k!(n-2k)!}}(2z)^{n-2k},}

где Γ ( s ) {\displaystyle \Gamma (s)} — гамма-функция, а n / 2 {\displaystyle \lfloor n/2\rfloor } обозначает целую часть числа n/2.

Многочлены Гегенбауэра являются обобщением многочленов Лежандра и Чебышёва и являются частным случаем многочленов Якоби. Также многочлены Гегенбауэра связаны с представлением специальной ортогональной группы S O ( n ) {\displaystyle SO(n)} . Они названы в честь австрийского математика Леопольда Гегенбауэра (1849—1903).